SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITY OF BENZOYL PROTECTED GLUCOPYRANOSYL 1, 2, 4,-THIDIAZOLIDINES

K.N. Puri

Department of Chemistry, Shri Shivaji Science College, Amravati (M.S.) India knpuri2008@rediffmail.com

ABSTRACT

5-Tetra-O-benzoyl-β-D-glucopyranosylimino-3-oxo-2-aryl-4-m-tolyl-1, 2, 4 thidiazolidines have been prepared by the interaction of Tetra-O-benzoyl-β-D-glucopyranosyl-S-chloro-isothiocarbamoyl chloride and 1-aryl-3-mtolyl carbamides. This converted high isolated yields which find applications in the area of medicinal chemistry. The identities of these new compounds have been established on the basis of chemical transformations and IR, H NMR and Mass spectral studies. The antimicrobial activity of these compounds have been evaluated against some selected pathogenic organisms like E. coli, P. vulgaris, S. aureus, P. aeruginosa, B.cereus and A. niger, C. albicans to get potent bioactive molecule. The study reveals that most of the compounds show satisfactory antimicrobial activities.

Keywords: Synthesis, spectral studies, carbamides, 1, 2, 4-thiadiazolines, Antimicrobial study

Introduction

In organic chemistry a series of heterocyclic compounds containing an unsaturated five member ring which contains two Carbons, two Nitrogens and one Sulphur atom are termed as thiadiazolines. Derivatives of thiadiazolines played a crucial role in history of heterocyclic compounds because of their wide variety of important biological properties such as antimicrobial, antioxidant, radio protective, and antileishmanial. The synthesis pharmacological evaluation of variety of glycosyl thiadiazolines have been reported.

Glucose derivatives are known to be selective and efficient catalytic inhibitors of human liver glycogen phosphorylase, a target for the design of type 2 diabetes therapeutics¹. Isothiocyanates are precursors of a wide range of N-thiocarbamoyl derivatives; their tendency to undergo nucleophilic additions and cycloadditions make them highly important intermediates in organic synthesis² for the preparation of compounds^{3,4}. heterocyclic heterocyclic compounds have been used as anti-tumoral^{5, 6} or antiviral agents, including AIDS^{7, 8} and hepatitis B^{9, 10} treatments.

To expand these views and application profiles, efforts have been developed for the synthesis of a new class of 5-Tetra-O-

benzoyl-β-D-glucopyranosylimino-3-oxo-2aryl-4-m-tolyl-1, 2, 4 thidiazolidines (5a-f). These were synthesized by the reaction of benzylic solution of Tetra-O-benzoyl-β-Dglucopyranosyl-S-chloro-isothiocarbamoyl chloride and 1-aryl-3-*m*-tolyl carbamides.

Experimental

Melting points were recorded on electro thermal melting point apparatus Specific rotations uncorrected. were digital measured on Equip-Tronic polarimeter model no. Eq 800 at 30°C in CHCl₃. IR spectra were recorded on a Perkin Elmer spectrometer. ¹H NMR were obtained on a Bruker DRX-300 (300 MHz FT NMR) NMR spectrometer in CDCl₃ solution with TMS as an internal reference. The mass spectra were recorded on a DART mass spectrometer. Purity of the compounds was checked by thin layer chromatography using Merck silica gel coated aluminum plates and petroleum ether: ethyl acetate as eluent.

General Procedure

Synthesis of 1-o-hydroxy phenyl-3-m-tolyl carbamide (3):

When benzene solution of *m*-tolyl isocyanate 1 (0.0025M, 0.66ml) was added to o- amino phenol 2 (0.0025M, 0.63 g, 20ml benzene), stirred it and kept for 24h at

room temp. The solvent benzene was distilled off and the resultant solid mass was triturated several times with petroleum ether $(60-80^{\circ}\text{C})$ to afford a white granular solid.

The *m*-tolyl isocyanate was purchased from Sigma-Aldrich (U.S.A.)

Synthesis of Tetra-*O*-benzoyl-β-D-glucopyranosyl-*S*-chloro-isothiocarbamoyl chloride(4):

The required Tetra-*O*-benzoyl-β-D-glucopyranosyl-*S*-chloro-isothiocarbamoyl chloride was prepared by earlier known method¹⁷.

Scheme:

$$H_3C$$
 1 I_3C 1 I_3C 2 I_3C 3 I_3C 3 I_3C 1 I_3C 3 I_3C 3 I_3C 1 I_3C 3 I_3C 1 I_3C 3 I_3C 1 I_3C 3 I_3C 3 I_3C 1 I_3C 3 I_3C 4 I_3C 3 I_3C 4 I_3C 3 I_3C 4 I_3C 6 I_3C 6 I_3C 8 I_3C 9 I

$$OBz$$
 OBz
 $OOBz$
 $OODZ$
 $OODZ$

Tetra-*O*-benzoyl-β-D-glucopyranosyl-isothiocarbamoyl chloride

5-Tetra-*O*-benzoyl-β-D-glucosylimino -3-oxo-2-aryl-4-*m*-tolyl- 1.2.4.thidiazolidines

Where, $Bz - COC_6H_5$

R = a) *o*-Hydroxy, b) *m*- Hydroxy, c) *p*- Hydroxy, d) *o*-nitro, e) *m*- nitro, f) *p*- nitro.

Result and Discussion

Synthesis of 5- Tetra-*O* -benzoyl-β-D-glucopyranosylimino-3-oxo-2-*o*-hydroxy phenyl-4-*m*-tolyl-1, 2, 4-thidiazolidine (5a)

1-Tetra-*O*-benzoyl-β-D-glucopyranosyl-*S*-chloro-isothiocarbamoyl chloride **(4)** (0.005M, 2.3gm in 20 ml CHCl₃) when reflux with1-*o*-hydroxy-3-*m*-tolyl carbamide **(3)** (0.005M, 1.25gm, 20ml CHCl₃) for 3 hrs. Evolution of hydrochloride gas was noticed. After condensation benzene was distilled off and the resultant syrupy mass was triturated several times with petroleum ether (60-80⁰), to afford white granular solid

(5a). Crystallized from chloroformpetroleum ether. The product was found to be nondesulphurizable when boiled with alkaline plumbite solution.

The IR, ¹H NMR and mass spectral analysis (Experimental) and elemental analysis (Table 1) clearly indicated the product and assign the structure as **5- Tetra-***O* -benzoyl-β-D-glucopyranosylimino-3-oxo-2-*o*-hydroxy phenyl-4-*m*-tolyl- 1,2,4-thidiazolidine (5a).

When the reaction of Tetra-*O*-benzoyl-β-D-glucopyranosyl-*S*-chloroisothiocarbamoyl chloride extended to several other 1-aryl-3-*m*-tolyl carbamides, corresponding 5-Tetra-

O-benzoyl-β-D-glucopyranosylimino-3-oxo-2-aryl-4-m-tolyl- -1,2, 4-thidiazolidines (**5b-f**) have been isolated.

5a: 5-Tetra-*O*-benzoyl-β-D-glucopyranosylimino-3-oxo-2-*o*-hydroxy phenyl-4-*m*-tolyl-1, 2, 4-thidiazolidine:

IR (KBr) cm- 1: v 3061 (Ar-H) str, 2902 (aliphatic C-H) str,1730 (C=O), 1529 (C=C) str, 1178 (C-N), 1269 (C-O) str, 1452 (C=N) str,1026 (C-S) str, 852 (char. of glucopyranosyl ring). ¹HNMR (CDCl₃) ppm: 8.22-6.78 (m, 28H, Ar-H), 6.14- 4.39 (m, 7H, glucosyl-H), 2.30 (s, 3H, CH₃). MS: 877 (M+), m/z 579,457, 335, 105. (Anal. Calcd. For C₄₉H₃₉O₁₁N₃S: C 67.07, H 4.45, O 20.07, N 4.79, S 3.65 Found C 66.66, H 4.36, O 19.81, N 4.75, S 3.58 %).

5d: 5-Tetra-*O*-benzoyl-β-D-glucopyranosylimino 3-oxo-2-*o*-nitrophenyl-4-*m*-tolyl-1, 2, 4-thidiazolidine:

IR (KBr) cm-1: v 3062 (Ar-H) str , 2962 (aliphatic C-H) str, 1741 (C=O) str, 1602 (C=C) str, 1178 (C-N) str, 1282 (C-O) str, 1492 (C=N) str, 1029 (C-S) str,852 (char. of glucopyranosyl ring). ¹HNMR (CDCl₃) ppm: 8.05-7.04 (m, 28H, Ar-H), 5.89-4.47 (m, 7H, glucosyl-H), 2.39 (s, 3H, CH₃). MS (m/z): 906 (M+), 579, 457, 335, 105 (Anal. Calcd. For C₄₉H₃₈O₁₂N₄S: C 64.90, H 4.19, O 21.69, N 6.18, S 3.53Found C 64.71, H 4.18, O 21.52, N 6.15, S 3.50 %).

Table 1: Physical data of characterization of compounds (5a-f):

Sr.	Reactants	Product	Yield	M.P	$[\alpha]_D^{30}$ (0.1, in	Found (Required)		Rf (Pet.Ether:
No.	(2a-g)	(5a-g)	(%)	(°C)	CHCl ₃)	N	S	EtOAC) (1:1)
1	-o- hydroxy-	5a	81	128	+116	4.75 (4.79)	3.58 (3.65)	0.49
2	-m- hydroxy-	5b	91	125	+110	4.65 (4.79)	3.58 (3.65)	0.72
3	-p-hydroxy-	5c	78	115	+122	4.72 (4.79)	3.50 (3.65)	0.74
4	-o-nitro-	5d	86	135	+145	6.15 (6.18)	3.50 (3.53)	0.75
5	-m-nitro-	5e	80	142	+145	6.15 (6.18)	3.52 (3.53)	0.85
6	-p-nitro-	5f	75	149	+117	6.09 (6.18)	3.51 (3.53)	0.73

Antimicrobial Activity

Newly synthesized 1, 2, 4, thidiazolidines were tested against following pathogenic for their antibacterial microbes antifungal activities using cup plate agar diffusion method¹¹⁻¹³. Escherichia coli, Proteus vulgaris, Staphalococcus aureus, Psudomonas aeruginosa, Bacillus cereus in nutrient agar medium and for antifungal activity against Aspergillus niger and Candida albicancs in potato dextrose agar medium. The compounds were taken at a concentration of 1mg/ml using dimethyl solvent. Gentamycine sulphoxide (100µg/ml) was used as a standard for antibacterial and Nystatin (100µg/ml) as a standard for antifungal activity. Most of the synthesized compounds exhibited mild to moderate anti-microbial activity against the tested microorganisms. Compounds were found to possess significant antibacterial and antifungal activity when compared to standard drug (*Gentamycine and Nystatin* for antibacterial and antifungal respectively).

It has been observed that some of these compound exhibited interesting microbial activities. 5d exhibited most significant activity against *Escherichia coli*, 5a exhibited most significant activity against

Proteus vulgaris, 5f and 5b exhibited most significant activity against Staphylococcus aureus, 5c exhibited most significant activity against Psudomonas aeruginosa, 5a, 5d and 5f exhibited most significant activity against Bacillus cereus, 5b and 5f exhibited

most significant activity against *A. niger*, 5b and 5d exhibited most significant activity against *C. albicans* respectively. All the other compounds exhibited low to moderate activity.

Table-2: Antimicrobial activity of 5-Tetra-*O*-benzoyl-β-D-glucopyranosylimino-3-oxo-2-aryl-4-*m*-tolyl-1, 2, 4 thidiazolidines.(5a-f):

Commound			Fungi				
Compound	E. coli	P. vulgaris	S. aureus	P. aeruginosa	B. cereus	A. niger	C. albicans
5a	17	19	17	12	19	18	17
5b	15	14	18	16	18	22	23
5c	17	15	16	19	12	19	17
5d	19	16	14	12	19	18	20
5e	18	15	16	12	16	17	16
5f	13	12	19	14	20	20	18
Gentamycine	20	20	20	20	20		
Nystatin						22	22

^{*} Values are the average of three readings / --- No activity was observed.

Conclusion

Based on the foregoing data, it may conclude that chemical transformation and spectral data supports the structure of the synthesized compounds. Thus, the newly synthesized heterocyclic compounds, exhibits comparable bacterial activity against the organisms tested. The method adopted in this investigation is simple, efficient and inexpensive and is useful in

synthesizing pharmacologically important molecules.

Acknowledgement

Author is thankful to SAIF/CIL, Panjab University, Chandigarh for providing spectral data. Authors also thank Head, Department of Chemistry and Principal, Shri Shivaji College, Amravati for encouragement and providing necessary facilities.

References

Somsak, L. Czifrak, K. Toth, M. Boker, E. Chrysina, E.D. Alexacou, K.M. Hayes, C. Tiraidis, J.M. Lazoura, E. Leonidas, Zographas, D.D. Oikonomakos, S.E.N.G. (2008). Natural Products and their Derivatives as Inhibitors of Glycogen Phosphorylase: Potential Treatment For Type 2 Diabetes, Curr. Med. Chem. 15: 2933.

Dolzhenko, A. Foo, M. Tan, B. Dolzhenko, A. Chiu, G. Chui, W. (2009). Synthesis and Heterocyclizations of 3, 4-

Dihydroquinazolin-2-yl Guanidine in the Search of New Anticancer Agents, Heterocycles 78 (7): 176 1.

Mukerjee, Ashare, A.K. (1991). Isothiocyanates in the chemistry of heterocycles, R. Chem Rev, 1: 91.

Brandsma, L. (2001). Synthesis and Functionalization of meso-Aryl-Substituted Corroles, Eur. J. Org. Chem, 4569.

Lech-Maranda, E. Korycka, A. Robak, T. (2006). Pharmacological and Clinical

Studies on Purine Nucleoside Analogs- New Anticancer Agents, Mini Rev Med Chem, 6:575.

Robak, T. Korycka, A. Kasznicki, M. Wrzesien-Kus, A, Smolewski, P. (2005). Purine Nucleoside Analogues for the Treatment of Hematological Malignancies: Pharmacology and Clinical Applications, Curr. Cancer Drug Targets, 5:421.

Vivet-Boudou, V. Didierjean, J. Isel, C. Marquet, R. (2006). Nucleoside and nucleotide inhibitors of HIV-1 replication, Cell Mol Life Sci., 63:163.

De Clercq, E. (2002). New developments in anti-HIV chemotherapy, Biochim Biophys Acta, 258: 1587.

Nunez, M. Soriano, V. (2005). Management of Patients Co-Infected With

Hepatitis B Virus and HIV, Lancet Infect Dis, 5: 374.

Chonco, F.M. and Rangiah, S. (2019). Susceptibility to hepatitis B infection, hepatitis B/HIV co-infections and hepatitis B immunity in HIV-positive patients starting HAART in Durban, South Africa, South African Family Practice, 61 (2):65.

Kavangh, F. (1963). Analytical Microbiology. Academic presss/ New York.

British Pharmacopeia-(II). (1998). Biological Assay and Testa. The Stationary Office Ltd. London.

Dhonde, M.G. Tale, P.V. (2006). Synthesis of 4-aryl-5-hepta-O-acetyl-β-D-lactosylimino-3-tetra-O-benzoyl-β-D glucopyranosylimino-1, 2, 4-dithiazolidine hydrochlorides, Ind. J. Of Chemistry, 45B: 829.